Adenosine A1 receptor activation increases myocardial protein S-nitrosothiols and elicits protection from ischemia-reperfusion injury in male and female hearts
نویسندگان
چکیده
Nitric oxide (NO) plays an important role in cardioprotection, and recent work from our group and others has implicated protein S-nitrosylation (SNO) as a critical component of NO-mediated protection in different models, including ischemic pre- and post-conditioning and sex-dependent cardioprotection. However, studies have yet to examine whether protein SNO levels are similarly increased with pharmacologic preconditioning in male and female hearts, and whether an increase in protein SNO levels, which is protective in male hearts, is sufficient to increase baseline protection in female hearts. Therefore, we pharmacologically preconditioned male and female hearts with the adenosine A1 receptor agonist N6-cyclohexyl adenosine (CHA). CHA administration prior to ischemia significantly improved functional recovery in both male and female hearts compared to baseline in a Langendorff-perfused heart model of ischemia-reperfusion injury (% of preischemic function ± SE: male baseline: 37.5±3.4% vs. male CHA: 55.3±3.2%; female baseline: 61.4±5.7% vs. female CHA: 76.0±6.2%). In a separate set of hearts, we found that CHA increased p-Akt and p-eNOS levels. We also used SNO-resin-assisted capture with LC-MS/MS to identify SNO proteins in male and female hearts, and determined that CHA perfusion induced a modest increase in protein SNO levels in both male (11.4%) and female (12.3%) hearts compared to baseline. These findings support a potential role for protein SNO in a model of pharmacologic preconditioning, and provide evidence to suggest that a modest increase in protein SNO levels is sufficient to protect both male and female hearts from ischemic injury. In addition, a number of the SNO proteins identified with CHA treatment were also observed with other forms of cardioprotective stimuli in prior studies, further supporting a role for protein SNO in cardioprotection.
منابع مشابه
Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia.
Activation of myocardial A1 adenosine receptors (A1AR) protects the heart from ischemic injury. In this study transgenic mice were created using the cardiac-specific alpha-myosin heavy chain promoter and rat A1AR cDNA. Heart membranes from two transgene positive lines displayed approximately 1,000-fold overexpression of A1AR (6,574 +/- 965 and 10,691 +/- 1,002 fmol per mg of protein vs. 8 +/- 5...
متن کاملChronic dipyridamole therapy produces sustained protection against cardiac ischemia-reperfusion injury.
Sustained protection against ischemia-reperfusion injury is not available for patients at risk for myocardial infarction who may require emergent reperfusion therapy. Whereas ischemic preconditioning and adenosinergic agents reduce myocardial injury, they are only effective when given immediately before ischemia or reperfusion. We recently found chronic ethanol exposure, an adenosine uptake inh...
متن کاملCharacterization of the sex-dependent myocardial S-nitrosothiol proteome.
Premenopausal women exhibit endogenous cardioprotective signaling mechanisms that are thought to result from the beneficial effects of estrogen, which we have shown to increase protein S-nitrosylation in the heart. S-nitrosylation is a labile protein modification that increases with a number of different forms of cardioprotection, including ischemic preconditioning. Herein, we sought to identif...
متن کاملEstrogen receptor-alpha mediates acute myocardial protection in females.
Sex differences in myocardial recovery have been reported after acute ischemia and reperfusion injury. Estrogen and the estrogen receptor are critical determinants of cardiovascular sex differences. However, the mechanistic pathways responsible for these differences remain unknown. We hypothesized that estrogen receptor-alpha is an important modulator of 1) myocardial functional recovery after ...
متن کاملMechanisms of sex differences in TNFR2-mediated cardioprotection.
BACKGROUND TNFR1/TNFR2 signaling may mediate different cellular and molecular responses (injury versus protection) and the balance may be affected by sex hormones. Previous studies have shown that females have improved myocardial functional recovery, TNFR1 signaling resistance, and increased SOCS3 expression after acute ischemia/reperfusion when compared with males. However, it is unknown wheth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017